
Hamachi Security
LogMeIn

An Overview

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview2

Table of Contents

Overview 3

Audience 3

Abbreviations 3

Security in LogMeIn Hamachi v2.x 4

Hamachi v2.x – Summary of Changes 4

Appendix A – Tunnel Exchanges 14

PUBLISHED BY
LogMeIn, Inc.
320 Summer Street Suite 100
Boston, MA 02210
Copyright © 2015 by LogMeIn, Inc.

All rights reserved. No part of the contents of this document may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

AppGuru™, LogMeIn Backup®, BoldChat®, LogMeIn® Central™, Cubby™, LogMeIn Hamachi®, join.
me®, LogMeIn Pro®, LogMeIn Rescue® or LogMeIn® Rescue+Mobile™, and Xively™, along with their
related software, including the Network Console™, and the other denoted terms in this publication
are the trademarks and service marks of LogMeIn, Inc., and may be registered in the U.S. Patent and
Trademark Office and in other countries. All other trademarks and registered trademarks are property of
their respective owners.

This publication may contain the trademarks and service marks of third parties and such trademarks and
service marks are the property of their respective owners.

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS AND SERVICES IN THIS
MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND
RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS AND SERVICES. THE LICENSE AND
LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT AND SERVICES ARE SET FORTH IN THE
LOGMEIN TERMS AND CONDITIONS AND ARE INCORPORATED HEREIN BY THIS REFERENCE.

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview3

Overview

This document provides an overview and protocol-level details of the security architecture employed by
LogMeIn Hamachi.

Audience

This document is written for security professionals and assumes advanced knowledge of applied
cryptography and security practices.

Abbreviations

AE
Authentication Exchange
CE
Configuration Exchange
KE
Key Exchange
SA
Security Association (IPsec specification)
SPI
Security Provider Index (IPsec specification)
ESP
Encapsulated Security Payload protocol (IPsec specification)

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview4

Security in LogMeIn Hamachi v2.x
Hamachi v2.x – Summary of Changes

•	 The client-server authentication is password-based; the server stores the password in a salted
hashed form
- However the initial login (the enrollment) still uses RSA to authenticate the server

•	 The client does not register or store its public key on a server; server never sees client’s public key

•	 The client-to-client authentication can utilize RSA, PSK or PKI certificates

•	 The tunnel is never used for bulk traffic transfer unless it is secured with a client-to-client key
exchange

•	 Client-to-client tunnel security and configuration protocol is redesigned

Hamachi v2.x – The Enrollment
The Hamachi v2.x client account is identified by a username. The username is an opaque string
automatically assigned by the server when the account is created. The username cannot be changed and
it is not guaranteed to be human-readable.

The server also generates a random password for an account. Default password size is 64 symbols. Both
the username and the password are passed back to the client in a response to its enrollment request.

The server’s enrollment response also includes RSA signature of the handshake hash. This allows the
client to ensure it creates an account with the server it wants (and not some random server posing as a
Hamachi backend).

Hamachi v2.x – The Password
The server stores the password in a hashed form. Furthermore, to prevent dictionary attacks against leaked
password hashes, the server employs salted hashing.
Salting is a process of appending an extra string of random or somewhat random data to the password
prior to hashing it. This effectively renders password recovery through the use pre-computed hash tables
infeasible.
The hash value of the password is further referred to as a client authentication token.
The client is allowed to change the authentication token at will (given its control session is an authenticated
state). The client application also has an option to not store the token in a disk configuration file, in which
case the user will be prompted for a password before the login.

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview5

Hamachi v2.x – The Login
The Hamachi v2.x login is essentially the same as Hamachi v1.x login in a pre-shared key mode.

The client sends the username and the HMAC of the handshake traffic. HMAC is computed using the
client’s authentication token as a password.

The server locates the client’s account record, verifies the HMAC, and responds with its own value of the
handshake HMAC.

Hamachi v2.x – Client-server security
Hamachi v2.x introduces no major changes in the way the client-server control connection is secured.

Hamachi v2.x – Client-to-client security
The Hamachi v2.x client implements a revised version of the tunnel security setup.

A combination of the cipher, the MAC, their keys, and other traffic processing options is referred to as Security
Association (SA).

Simply put, the SA includes all the information needed to tunnel or de-tunnel the traffic to/from the peer.
The Security Provider Index (SPI) value is an ID of an SA and it is included in all packets exchanged by the
peers.

Each tunnel has two SAs; one SA per direction. Both SA and SPI are established terms from the IPsec
specification.

Hamachi v2.x tunnels are comprised of one or more links. A link provides a simple connectivity service
between the clients. A link may be direct or relayed, it may be UDP or TCP based, it may or may not be
established with a help of the Hamachi server.

Hamachi v2.x – Client-to-Client Security – Exchanges
Hamachi v2.x tunnel configuration and setup is based on three exchanges. All three exchanges use the
same initiator-responder mechanism and the same packet header format. They all negotiate new SA
and they share a logic used to activate new SA. These similarities are intentional as they simplify the
implementation.

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview6

KE - Key Exchange
KE generates shared secret used to protect the rest
of the tunnel traffic

AE - Authentication Exchange AE authenticates the KE

CE - Configuration Exchange
CE adjusts tunnel options such as traffic
compression and encryption

General Exchange Structure
•	 The Initiator of the exchange selects a new random 32 bit SPI value and sends an “offer” message:

<exchange-type> | SPI_i | 0 | <exchange-specific data>

•	 The responder decides whether to accept or reject the offer. The offer is rejected by aborting the
exchange as described below.

•	 If the responder accepts the exchange it creates its own SPI value and prepares a new SA and replies
with:

<exchange-type> | SPI_r | SPI_i | <exchange-specific data>

At this point the responder has two SAs – old and new. It continues to use the old SA for the outbound
traffic. Inbound traffic is checked against both the new and old SAs. Once the new SA is used, the old
SA is discarded.

•	 The initiator receives a response. Similar to the responder, it has an option of aborting an exchange if it
does not like the response.

•	 If the initiator accepts the response, it creates a new SA.

•	 At this point the initiator also has two SAs and it starts processing all outbound traffic using the newer
one. Inbound traffic is checked against both new and old SAs. Once the new SA is used, the old SA is
discarded.

•	 The initiator periodically re-sends the request until it receives a reply or exhausts a number of
retransmissions. The exchange is initiator-driven.

•	 The responder aborts the exchange by sending:

<exchange-type> | 0 | SPI_i | <exchange-specific data>

It can only abort the exchange as a response to one of the initiator’s messages.

•	 The initiator aborts the exchange by sending:

<exchange-type> | 0 | SPI_r | <exchange-specific data>

And the responder acknowledges it with:

<exchange-type> | 0 | SPI_i | <exchange-specific data>

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview7

Symmetrical Exchange

A symmetrical exchange occurs when both sides simultaneously initiate an exchange. Clients know
they are in this situation if they receive an OFFER in response to their own OFFER. Instead of trying to
complete a symmetrical exchange, clients implement a simple initiator-responder election mechanism
instead. Each client compares its username to the username of the peer. The client with a “smaller”
username (as per certain ordering criteria) becomes a responder, and its peer an initiator. The initiator
drops the peer’s request and awaits a reply to his own. The responder does the opposite: it cancels its
own request and replies to the peer’s. See also Appendix A – Tunnel Exchanges.

Hamachi v2.x – Client-to-client security – Initial SA
When an individual link is first established, it may or may not have an Initial SA set up. For example, when
the server establishes a direct or relayed link, it provides both clients with a pre-generated keying material.
This enables clients to establish an SA.

On the other hand, if the link is manually configured, the clients do not have any shared secret data, so the
link does not have an initial SA.

This SA, when present, is used for traffic authentication only; and not its encryption. Its sole purpose is to
provide DoS attack protection for the key exchange that follows.

The use of initial SA is somewhat unique to Hamachi v2.x. Traditional IKE-based VPN systems are
susceptible to DoS attacks against the initial handshake, and this is considered a known deployment risk.

Initial SA is referred to as Weak SA. The name is due to the fact that it is derived from a server-supplied
keying material. This theoretically grants the server full access to any client-to-client traffic protected under
this SA. As a result, the SA is not used for anything but preliminary authentication of the key exchange
traffic.

Summary
If the server provides an initial keying material for a link, the Weak SA is established. This is a link SA and it
is used for traffic authentication only. The SA exists until the KE is executed between the clients, at which
point a tunnel SA is established. The latter is then used to process the traffic on all links, thus making all
individual link SAs obsolete.

Hamachi v2.x – Client-to-Client Security – Overview
Once the Hamachi v2.x tunnel gets its first operational link, the clients execute a key exchange. The KE
generates an SA that is based on a secret known only to the clients. In other words, it excludes the server
“from a loop”.

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview8

Initial key exchange is followed by an Authentication Exchange (AE). It confirms the identities of both
clients and verifies that KE was not a subject to a Man-in-the-Middle attack.

The key exchange may be re-run later on, which is also known as re-keying. It typically is not followed by
an AE, because the authenticity of the exchange parties is simply inherited from the existing SA.

Overview of the Tunnel Security Setup Process

1 Link A is up.

 If the server provides keying material, Weak SA is set up for this link.

2 Client initiates KE with a peer

 If KE messages are sent over A, then its Weak SA is used to authenticate them.

3 KE is completed.

 This creates Anonymous SA, which a shared tunnel SA.

 Weak SAs on all links are discarded.

4 Client initiates AE with a peer.

 The traffic is protected by Anonymous SA.

5 AE is completed.

 This creates Strong SA (for the lack of better name) and completes the setup.

Hamachi v2.x – Client-to-Client Security – KE Details
The key exchange is modeled loosely after JFK and IKEv2 protocols and is a request-response protocol.
The flow of the exchange is as follows.

1 A generates new SPI value, new Nonce , private DH key and public DH exponent

2 A sends SPI, Nonce and public DH exponent to A

3 A receives the packet, generates its own SPI value, Nonce, private DH key and public DH exponent

4 A generates shared DH key and uses it as a keying material to create new SA

5 A sends its SPI, Nonce and public DH exponent to A

6 A receives the packet, generates shared DH key and creates an SA.

Client A may facilitate a switch to a new SA by sending a ping-like application level message. This will
be processed under the new SA; thereby causing A to switch the SA when it receives the message. In
turn, A will echo the packet; this response will cause A to switch its SA.

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview9

A may choose to delay expensive operations such as DH secret computation until it receives the first
packet from SA with a new SPI value. This provides a protection against CPU-bound DoS attacks. Also
note that this sort of attack is only possible when the KE messages are not authenticated (when there
are no link or tunnel SAs).

Both the request and the response use the same format:

Type 8 bits Message type, 0xC1 for KE message
SPI_x 16 bits Sender’s new SPI value
SPI_y 16 bits Recipient’s new SPI value
Suite 32 bits An ID of a pre-configured set of crypto algorithms and their

parameters used by SA and KE itself. All clients must support suite
1, which is described below

Nonce_x var Sender’s vector of random bytes, used for generating SA’s keying
material.

DH_gx var Sender’s public DH exponent. The modulus and the base are
defined by a suite being used.

Additionally, both clients compute a key exchange hash, which is hash of the following:

SPI_x, SPI_y, Suite, Nonce_x, Nonce_y, DH_gx, DH_gy

Where

..._x is a client’s own value and

..._y is a peer’s value.

This hash is later used with an Authentication Exchange.

Hamachi v2.x – Client-to-Client Security – AE Details
Authentication exchange is used to confirm the identities of the clients and to check the integrity of the key
exchange. It follows the KE that generates Anonymous SA.

There are three types of authentication methods supported by the Hamachi v2.x clients:

•	 RSA keys

•	 Pre-shared key (passwords)

•	 PKI certificates

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview10

The protocol flow of AE does not depend on specifics of the method and it is as follows:

1 A checks its configuration and selects authentication method

2 A sends SA SPIs, auth method ID, its arguments, and an authentication hash to A

 Authentication hash is computed from key exchange hash and authentication data

3 A receives the packet, checks the auth hash and a creates new SA

 All parameters of new SA except for SPIs are copied from existing SA

4 A sends SA SPIs, auth method ID, its arguments and its own auth hash to A

 A may use an auth method that is different from the one used by A

5 A receives the packet, checks the auth hash and creates new SA

Client A may reject the exchange in there’s no matching authentication method or for some other reason.
In this case, it replies with a reject message:

Type 8 bits Message type, 0xC2 for AE message
<zero> 16 bits
SPI_y 16 bits Initiator’s SPI value
ErrorCode 32 bits the cause of the failure

The client may be configured to send zero as an ErrorCode for all AE failures.

RSA Keys
This is the method employed by Hamachi v1.x clients. The authentication model is similar to that of an
SSH protocol. The first time a client authenticates a peer, it adds peer’s public key to its key repository and
marks it as unverified. The user is then expected to check key’s fingerprint via an out-of-band channel.
Once validated, the key is then marked as verified or trusted.

The client then also warns the user if the peer switches to using a different key as this might be a
manifestation of a Man-in-the-Middle attack against AE.

The ID of this authentication method is 1. The packet format is as follows:

Type 8 bits Message type, 0xC2 for AE message
SPI_x 16 bits Sender’s SPI value
SPI_y 16 bits Recipient’s SPI value
AuthMethod 8 bits Authentication method ID, 0x01 for RSA
PublicKey var Sender’s public key
Signature var Sender’s RSA signature of an auth hash

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview11

Authentication hash is computed as follows:

SPI_x, SPI_y, ID_x, ID_y, AuthMethod, PublicKey, KE_hash

Where ID_x and ID_y are the usernames of the local and remote client respectively. Note that when
computing initiator’s hash, the SPI_y value is going to be zero.

Pre-shared Key
This method is supported to allow RSA-free deployments. Both clients are configured with the matching
pre-shared tunnel keys (passwords) and these are used to compute HMAC over the authentication hash.
The HMAC is then sent over to the peer for verification:

Type 8 bits Message type, 0xC2 for
AE message

SPI_x 16 bits Sender’s SPI value
SPI_y 16 bits Recipient’s SPI value
AuthMethod 8 bits Authentication method

ID, 0x02 for PSK
AuthHash var HMAC as per above

PKI Certificate

The third authentication method is based on certified public keys. It allows establishing a validity of
(previously unknown) peer’s public key identity through trust in a 3rd party – a Certificate Authority.

This method is structured the same way as RSA one, except the public key certificate is included into an
AE packet instead of a public key itself.

Type 8 bits Message type, 0xC2 for AE
message

SPI_x 16 bits Sender’s SPI value
SPI_y 16 bits Recipient’s SPI value
AuthMethod 8 bits Authentication method ID, 0x03

for Cert
PublicKeyCert Var Sender’s public key certificate
Signature var Sender’s RSA signature of an

auth hash

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview12

Hamachi v2.x – Client-to-Client Configuration
Hamachi v2.x clients are capable of dynamically re-configuring the tunnel to toggle the use of encryption,
compression and potentially other settings.

Each traffic processing option has three settings – ON, OFF and ANY. The last option indicates a willingness
of a peer to accept whatever the other side wants to use.

For example, if the client wants to enable the compression, it sends an offer to the peer with ON as a
compression setting. If peer’s own configuration has this setting either at ON or ANY, the compression is
turned on. However, if it is set to OFF, there is a conflict and the compression setting is left unmodified.

More formally, a tunnel is re-configured using a configuration exchange (CE). A peer starts CE by sending
his version of the tunnel option set. Second peer responds with its own version, at which point both peers
look at both options sets and deduce new set of options. In case of conflicting settings, its value copied
from the existing SA.

An option set is encoded as a bitfield stored in a 32 bit integer. Each option occupies 2 bits. The value
of 01 is ON, 02 – OFF, 03 – ANY. The value of 00 is reserved and should be treated as a protocol error if
encountered.

When encoded, bits 0 and 1 are used for an encryption option, bits 2 and 3 – for the compression. Remaining
bits are reserved at the moment and should be set to zero.

New option value is deduced from two peer’s values as follows:

ON OFF ANY

ON on no-change on
OFF no-change off off
ANY on off no-change

The exchange itself progresses as follows:

1 A generates new SPI, decides on the new tunnel configuration

2 A sends new SPI and the new tunnel config encoded in 32 bit integer to A

3 A receives the packet

4 A generates new SPI, deduces effective tunnel configuration and creates new SA

5 A sends back SPI and its own version of the tunnel config

6 A receives the packet, deduces effective config and creates new SA

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview13

Encryption and authentication keys are inherited from existing SAs, only SPIs and traffic processing
options are updated.
The activation process for new SAs is the same as that of a Key Exchange.
The handling of a symmetrical exchange start is also the same as with the KE.

The “offer” packet:

Type 8 bits Message type, 0xC3 for CE message
SPI_x 16 bits Sender’s SPI value
<zero> 16 bits Recipient’s-would-be-SPI-value
Options 32 bits Initiator’s configuration option set

The “accept” packet:

Type 8 bits Message type, 0xC3 for CE message
SPI_x 16 bits Sender’s SPI value
SPI_y 16 bits Recipient’s SPI value
Options 32 bits Responder’s configuration option

set

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview14

Appendix A – Tunnel Exchanges

Typical Flow
The following diagram demonstrates a general flow of the events during the exchange. Both sides are
assumed to have an existing SA (SA_cur) before the exchange starts.

Client A uses its existing
SA to process the traffic

A initiates the exchange
• generates SPI_i
• sends an OFFER packet

A processes the ACCEPT
• creates SA_new
• starts using SA_new for

both inbound and
outbound traffic

• continues using SA_cur for
inbound traffic

Once the first packet under
SA_new is received, A
discards SA_cur.

The exchange is complete.

Client B uses its existing
SA to process the traffic

B responds to the OFFER:
• generates SPI_r
• creates SA_new and starts

using it for inbound traffic
• replies with ACCEPT

B continues to use SA_cur for
both inbound and outbound
traffic

Once the first packet under
SA_new is received, B
discards SA_cur and starts
using SA_new for all its traffic.

The exchange is complete.

Client A uses its existing
SA to process the traffic

A initiates the exchange
•	 generates SPI_i
•	 sends an OFFER packet

A processes the ACCEPT
•	 creates SA_new
•	 starts using SA_new for both

inbound and outbound traffic
•	 continues using SA_cur for

inbound traffic

Once the first packet under
SA_new is received, A discards
SA_cur.

The exchange is complete.

Client B uses its existing
SA to process the traffic

B responds to the OFFER:
•	 generates SPI_r
•	 creates SA_new and starts

using it for inbound traffic
•	 replies with ACCEPT

B continues to use SA_cur for
both inbound and outbound
traffic

Once the first packet under
SA_new is received, B
discards SA_cur and starts
using SA_new for all its traffic.

The exchange is complete.

©2015 LogMeIn, Inc.

LogMeIn Hamachi Security: an Overview15

Packet Loss and Excessive Link Latency
Client A periodically re-sends its OFFER if it does not hear back from A within a timeout period. Once A
exhausts all retransmission attempts, it cancels the exchange.

If A responds to the OFFER after A has cancelled the exchange, A sends a REJECT packet, thus forcing
A to discard its SA_new. A is expected to respond with its own REJECT to confirm the reception of “A’s”
REJECT.

Similar to the OFFER, A retransmits REJECT few times if A does no respond in a timely manner. A aborts
the retransmission sequence if another exchange is initiated by either side.

REJECT retransmits are really for “B’s” own benefit – they try to make sure that A knows that the exchange
has been cancelled. Client A may in fact not send a single REJECT and the logic described below will still
ensure the tunnel is always in a consistent state.

“B’s” SA_new can be viewed as an initially disabled SA that is activated by a packet received from A. This
means that if A decides not to use SA_new, A may be required to discard the SA without ever using it.

Specifically, in cases when there is a packet loss in a B-to-A direction, A may never receive any of the
ACCEPT packets. Client A will exhaust its retransmission attempts and cancel the exchange. A, however,
will generate SA_new.
In this scenario, A is required to discard its SA_new under either of two conditions:
•	 It receives new OFFER from A
•	 It makes its own OFFER and receives a response from A (either ACCEPT or REJECT)
This behavior also covers the case when either A rejects “A’s” OFFER or A rejects “B’s” ACCEPT and these
REJECT packets are lost.

When can the new exchange be started
The key exchange and the configuration exchange are an offer-accept or an offer-reject sequence. However
the authentication exchange may be longer - offer-accept-reject-reject.

As a result of this, the conditions under which the new exchange may be started depend on the exchange
type and the role of the peer in a preceding exchange.

The Initiator:

KE, CE, AE – after receiving ACCEPT or REJECT.

The Responder:

KE, CE – after sending ACCEPT or REJECT.

AE – after receiving REJECT or the first packet processed under the new SA

